Points of discontinuity for y = (x-1)^{1/3} ?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Points of discontinuity for y = (x-1)^{1/3} ?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Are you just posting all your homework questions on here or what? \[(x-1)^{1/3}=\sqrt[3]{x-1}\] Cannot take the root of a negative, f(x) is continuous on \[[1,\infty)\]
Hey. cot x [0, 2 pi] is continous everywhere?
cotx is 1/tanx so it has an infinite discontinuity where tanx=0

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

No, because \[\cot(x)=\cos(x) \div \sin(x)\] Cannot divide by zero. on \[[0,2\pi]\] sin(x) is 0 at x=0, x=pi, and x=2pi. So cot(x) is a periodic function that has vertical asymptotes at the beforementioned points. Discontinuous at x=0, x=pi, x=2pi

Not the answer you are looking for?

Search for more explanations.

Ask your own question