Solve the differential equation by separation of variables y ln x (dx/dy) = (y+1/x)^2

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Solve the differential equation by separation of variables y ln x (dx/dy) = (y+1/x)^2

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

If this got posted twice sry my tablet works funny on this site
Is it a case where you don't know how to separate it, or do the actual integration?
\[y \log x \frac{dy}{dy}=\left( \frac{y+1}{x} \right)^2 = \frac{(y+1)^2}{x^2} \rightarrow \frac{y}{(y+1)^2}dy=\frac{dx}{x^2 \log x}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

The fraction in y can be decomposed:\[\frac{y}{(y+1)^2}=\frac{1}{y+1}-\frac{1}{(y+1)^2}\]
Damn...I misread dx/dy as dy/dx...hang on...
It's simpler:\[y \log x \frac{dx}{dy}=\frac{(y+1)^2}{x^2} \rightarrow x^2 \log x dx = \frac{(y+1)^2}{y}dy\]
For the left-hand side, make a substitution, u = log(x), then\[x=e^u \]and also\[dx = e^u du\]The right-hand side becomes:\[\int\limits_{}{}x^2 \log x dx = \int\limits_{}{}(e^{u})^2u.e^udu=\int\limits_{}{}u e^{3u}du\]This can be solved using integration by parts a couple of times (selecting u as your 'u' and e^u as your 'dv') to give\[\frac{e^{3u}}{3}(u-\frac{1}{3})+c=\frac{x^3}{3}(\log x - \frac{1}{3})+c\]
The right-hand side becomes:\[\int\limits_{}{}\frac{(y+1)^2}{y}dy=\int\limits_{}{}\frac{y^2+2y+1}{y}dy=\int\limits_{}{}y + 2 + \frac{1}{y}dt=\frac{y^2}{2}+2y+\log y + c\]The constants are not necessarily this same, even though I've used c twice. Your solution is then\[\frac{y^2}{2}+2y+\log y = \frac{x^3}{3}(\log x - \frac{1}{3})+c\]
Leave it like this.

Not the answer you are looking for?

Search for more explanations.

Ask your own question