Determine if the function f(x)=(x+1)/x satisfies the conditions of the Mean Value Theorem on [1,4], and find all value(s) of c in (1,4) such that f'(c)=(f(b)-f(a))/b-a.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Determine if the function f(x)=(x+1)/x satisfies the conditions of the Mean Value Theorem on [1,4], and find all value(s) of c in (1,4) such that f'(c)=(f(b)-f(a))/b-a.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

The Mean Value Theorem says that if a function f(x) is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there exists a point c in (a, b) such that\[f'(c)=\frac{f(b)-f(a)}{b-a}\]Your function f is continuous and differentiable on\[[1,4] ,(1,4)\]respectively. You need to now find all c that satisfy the theorem:\[f'(x)=-\frac{1}{x^2} \rightarrow f'(c)=-\frac{1}{c^2}\]that is,\[-\frac{1}{c^2}=\frac{5/4-2}{4-1} \rightarrow c^2=4 \rightarrow c = \pm 2\]Since\[-2 \notin ([1,4]\]you take c=2.
the given function does not satisfy the conditions, function is continuous on [1,4], differntiable on (1,4) but f(a) = f(b) is not satisfied
That's Rolle's theorem.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

oh m wrong :(
:)
yes lokisan u r right
Is that all, Mr President?
thank you very much lokisan. you are a lifesaver! :)
You're welcome :)
one more question though lokisan... how did you come up wit the derivative being -1/x^2?
\[f(x)=\frac{x+1}{x}=1+\frac{1}{x} \rightarrow f'(x)=\frac{d}{dx}0+\frac{d}{dx}x^{-1}=0-x^{-2}=-\frac{1}{x^2}\]
It should read \[\frac{d}{dx}1\]not\[\frac{d}{dx}0\]
omg why didnt i think of that. i was trying to do the quotient rule this whole time!
Yeah, try and simplify if you can.

Not the answer you are looking for?

Search for more explanations.

Ask your own question