anonymous
  • anonymous
domain of: y=x+5/square root: (x^2-1)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[y=\frac{x+5}{\sqrt{x^2-1}}\]The domain of this function is the set of all x such that the function is well-defined. You need to ensure two things here. 1. the numerator cannot be 0 2. the radiacand (expression under the sqrt sign) cannot be negative (for real numbers). Let's look for x-values the function CAN'T take. This will be when\[\sqrt{x^2-1}=0\]by the first point, and when\[x^2-1<0\]by the second point. For the first,\[\sqrt{x^2-1}=0 \rightarrow x^2-1=0 \rightarrow x= \pm 1\]For the second,\[x^2-1<0 \rightarrow x^2<1 \rightarrow -1
anonymous
  • anonymous
The above 'D' means 'the set of all real numbers, except for those between -1 and 1 inclusive of -1 and 1'.
anonymous
  • anonymous
You're other equation is right, btw.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
*Your
anonymous
  • anonymous
Okay, thanks for letting me know..

Looking for something else?

Not the answer you are looking for? Search for more explanations.