anonymous
  • anonymous
find integral of {sec(x)tan(x)/sec(x)-1
Mathematics
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

anonymous
  • anonymous
find integral of {sec(x)tan(x)/sec(x)-1
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

yuki
  • yuki
could you write it out using the equation button?
anonymous
  • anonymous
\[\int\limits \frac{\sec(x) \tan(x)}{\sec(x) -1} dx\]?
anonymous
  • anonymous
so du = sec(x)tan(x) ^_^ and you'll get the following: \[\int\limits \frac{1}{u} du = \ln|u| + c = \ln|\sec(x)-1| + c\]let u = sec(x) -1 Correct me if I'm wrong ^_^

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
oh dear, the steps are messed up , I apologize
anonymous
  • anonymous
thank you im trying to figure it out ;-)
anonymous
  • anonymous
oh, you're welcome, let me know if you don't get it :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.