anonymous
  • anonymous
what is linear transformation in matrixes please help a simple example please
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Still here?
anonymous
  • anonymous
If you let A be a m x n matrix, then the function T defined by \[T(v)=Av\] is a linear transformation from R^n into R^m (i.e v is a vector in R^n). Basically, multiplying this matrix by these vectors is a linear transformation because:\[T(v+w)=A(v+w)=Av+Aw=T(v)+T(w)\]for v,w in R^n and\[T(\lambda v) = A(\lambda v)=\lambda Av=\lambda T(v)\]where lambda is a scalar. So, matrices can take vectors from one space to another in a linear way.
anonymous
  • anonymous
A common example of linear transformation in matrices is the rotation matrix: A=\ cos theta -sin theta\ \sin theta cos theta\ This is a linear transformation on 2-dimensional vectors, like, v=(2,1) and w=(3,4) since: T(v+w)= A[(2,1)+(3,4)]=A[(5,5)]= \5cos theta -5sin theta\ \5sin theta + 5cos theta\ ...(1) and T(v)+T(w)= A[(2,1)] + A[(3,4)] = \2cos theta -sin theta\ + \3cos theta - 4sin theta\ \2sin theta + cos theta\ \3sin theta + 4cos theta\ =\5cos theta -5sin theta\ \5sin theta +5cos theta\ ...(2) i.e. T(v+w)=T(v)+T(w) You can show the scalar condition as well by doing something similar (i.e. evaluating T(lambda v) = A(lambda (1,2)), and (lambda)T(v) = (lambda)A(1,2) and showing the two are equal. I apologize if this confuses matters...it's *really* difficult to communicate everything online. Let me know if you need more help.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Some sites: http://www.youtube.com/results?search_query=linear+transformation+examples&aq=1&oq=linear+trans http://www.youtube.com/results?search_query=linear+transformation+matrices&aq=0&oq=linear+transformation+mat

Looking for something else?

Not the answer you are looking for? Search for more explanations.