• anonymous
int_{?}^{?} (1/2y - 2/y^2 + 3/y^1/2) dy
  • chestercat
I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this
and thousands of other questions

  • anonymous
\[\int\limits_{?}^{?} (1\div2y - 2/y^2 + 3/\sqrt{y}) dy\]
  • anonymous
CThis integral looks like that to me \[\int\limits_{}^{}(1/(2y)) -(2/y^3)+(3/\sqrt{y})dy\]. If that is the case then you can separate the integral into three integrals, and bring the y's to the numerator by making the exponent negative. This makes it easier to view when resolving. the only one that will not do that is the first one, which will boil down to (1/2) ln y after integrating. bring your constants in front of the integrals and bring the exponents to their appropriate negative power. Remember the first one is a 1/y situation = ln

Looking for something else?

Not the answer you are looking for? Search for more explanations.