anonymous
  • anonymous
int_{?}^{?} (1/2y - 2/y^2 + 3/y^1/2) dy
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\int\limits_{?}^{?} (1\div2y - 2/y^2 + 3/\sqrt{y}) dy\]
anonymous
  • anonymous
CThis integral looks like that to me \[\int\limits_{}^{}(1/(2y)) -(2/y^3)+(3/\sqrt{y})dy\]. If that is the case then you can separate the integral into three integrals, and bring the y's to the numerator by making the exponent negative. This makes it easier to view when resolving. the only one that will not do that is the first one, which will boil down to (1/2) ln y after integrating. bring your constants in front of the integrals and bring the exponents to their appropriate negative power. Remember the first one is a 1/y situation = ln

Looking for something else?

Not the answer you are looking for? Search for more explanations.