anonymous
  • anonymous
z^2+8z+16/z^2-100 times z^2-10z/z+4=
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
i think the answer is 1
anonymous
  • anonymous
(z^2+8z+16/z^2-100)*(z^2-10z/z+4) = z^2*(z^2-10z/z+4)+8z*(z^2-10z/z+4)+16/z^2-100*(z^2-10z/z+4) u can finish it right?
anonymous
  • anonymous
lawd it looks even harder lol

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
z^2*(z^2-10z/z+4) = z^4-10z^3/z+4 8z*(z^2-10z/z+4) = 8z^3-80z^2/z+4 16/z^2-100*(z^2-10z/z+4) = (16z^2/z^2-100)-(160z/(z^2-100)(z+4)) from this is easier
anonymous
  • anonymous
it doesn't nave to be solved simplified
anonymous
  • anonymous
and then what it has to be?
anonymous
  • anonymous
simplified
anonymous
  • anonymous
(z^2+8z+16/z^2-100)*(z^2-10z/z+4) = z^2*(z^2-10z/z+4)+8z*(z^2-10z/z+4)+16/z^2-100*(z^2-10z/z+4) =z^4-10z^3/z+4+8z^3-80z^2/z+4+(16z^2/z^2-100)-(160z/(z^2-100)(z+4)) and you simplify by urself from this
anonymous
  • anonymous
The problem statement seems to be: \[\frac{\left(z^2+8 z+16\right) \left(z^2-10 z\right)}{\left(z^2-100\right) (z+4)} \] Both of the products in the Numertor can be factored as well as the first product of the Denominator. Factor and then simplify. \[\frac{(4+z)^2 (-10+z) z}{(-10+z) (10+z) (z+4)}=\frac{z (4+z)}{10+z}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.