anonymous
  • anonymous
Find the angle between the given vectors to the nearest tenth of a degree: U=4i + 5j, V=7i - 4j
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
teh angle between vector is: cos(t) = U*V/|U||V|
amistre64
  • amistre64
<4, 5> <7,-4> -------- 28 -20 = 8; so the top is 8;
amistre64
  • amistre64
sqrt(16+25) * sqrt(49 + 16) is the bottom

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
8 ----------; take the cos^-1 to get the angle sqrt(41*65)
amistre64
  • amistre64
if its greater than the cos^1(7/sqrt(65)) you need to adjust for a different quadrant
anonymous
  • anonymous
Wow, I did this problem like twice and couldn't get it, I put the wrong number in for the second i.....lol Thanks a bunch!!!
anonymous
  • anonymous
It's 81.1 deg
amistre64
  • amistre64
angle = 81.08; but check the other one :)
amistre64
  • amistre64
that angle seems larger than ....your right, my senility kicked in for a moment lol
anonymous
  • anonymous
XD

Looking for something else?

Not the answer you are looking for? Search for more explanations.