anonymous
  • anonymous
If vector a=-8(vector b) and vector c=7(vector b) and what is angle between a and c ??
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
cos(t) = a*c/|a||c|
amistre64
  • amistre64
b*b = |b|^2
amistre64
  • amistre64
<-8xb, -8yb> < 7xb, 7yb> -------------- -xb + -yb = -1

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
thats messed up lol
anonymous
  • anonymous
yeah.. i didnt really understand that..
anonymous
  • anonymous
what do u mean in ur 3rd reply..??
amistre64
  • amistre64
a*c = -8 * 7
amistre64
  • amistre64
-56x^2b + -56 y^b is the only values we can get from it right?
amistre64
  • amistre64
-56|b|^2 is the top value
amistre64
  • amistre64
the bottom is -8|b| * 7|b| = -56|b|^2 cos(t) = 1
amistre64
  • amistre64
t = 90 begrees right?
amistre64
  • amistre64
so hard to type in the dark lol
amistre64
  • amistre64
or it might just be 180 degrees; since a and c are scalars of b and they are facing inopposite directions.
anonymous
  • anonymous
I worked it similarly. I don't know if we got same place. \[-8b.-7b =\left| a \right|\left| c \right|\cos \theta\] \[-8b.-7b =8b7b \cos \theta\] \[-1=\cos \theta\] \[\cos^{-1} -1=\theta\] \[\theta = 3.14 (radians)\]
anonymous
  • anonymous
I didn't dot the left hand side. May be that is a mistake that needs to be cleaned up. I should go to sleep now.

Looking for something else?

Not the answer you are looking for? Search for more explanations.