the curve y=f(x) has a minimum point at (3,5) state the co-ordinates of the corresponding minimum point on the graph of: y=3f(x) and y=f(2x) how do i find the co-ordinates? and what would the f(x) graph look like??

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

the curve y=f(x) has a minimum point at (3,5) state the co-ordinates of the corresponding minimum point on the graph of: y=3f(x) and y=f(2x) how do i find the co-ordinates? and what would the f(x) graph look like??

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

You don't need to know how the graph looks like in order to get the maximum of y. You can see that the two functions y=3f(x) and y=f(2x) are just f(x) with some operations.
3f(x) will have same x value as minium , but the y value will be multiplied by 3
for 3f(x) -> minium ( 3 , 15 ) , methinks , havent taught much about it so might not be right

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

For the first function (y=3f(x)), the minimum will occur at the same point x=3, but the value will change by 3 times. That's the minimum point will be (3,15).
for f(2x) , one thinks use chain rule
let g(x) = f(2x) g'(x) = 2 f ' (2x) =0 for min/max. f ' (2x) =0 gets a bit strange here
Well, there is no need to use the chain rule, I guess.
we know that f' (3) =0 also , but I am not 100% sure if that means 2x =3 , dont think it does
for the function y=f(2x), the minimum occur at 2x=3 that's x=3/2. The y-value remains the same. The minimum point, then, is (3/2,5).
but with the second one, shouldn't it stretch the y axis??? and the first one th x axis???
Thinking of it as "stretching" may lead to confusion, but let's go with that metaphor. - The first one divides y by 3: $$y=3f(x) \implies \frac{y}{3} = f(x) $$ Therefore this is actually a shrinking of the y-axis, relative to the function that says the same size. Since the function stays the same size, everything gets bigger, which is why you multiply by 3 to get the minimum. - The second one multiplies x by 2. This is indeed a stretching of the x-axis, meaning the function gets smaller. That's why you divide the x value by two to get the location of the new minimum.
ok, thanks :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question