anonymous
  • anonymous
the two lines x=ay+b, z= cy+d and x=a'y+b', z=c'y+d' are perpendicular to each other, if: (a) aa'+cc'=1 (b) (a/a') + (c/c') =-1 (c) (a/a')+(c/c')=1 (d) aa'+cc'=-1
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
the answer would be d since we can rewrite the first two lines as y=(x-b)/a y=(z-d)/c therefore ((x-b)/a)= ((z-d)/c) which gives us similar we write the second two lines is that for giving us and we know if they are perpendicular the dot product gives us 0 thus xx'+1+zz'=0
anonymous
  • anonymous
ok how did you get ??
anonymous
  • anonymous
i mixed up my signs halfway through it should be and and aa'+1+cc'=0

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
ohk that works.. thanx bro!

Looking for something else?

Not the answer you are looking for? Search for more explanations.