anonymous
  • anonymous
a tank shape of inverted cone with diameter 40ft depth of 15 ft being filled at rate of 10cubic ft/min how fast is the depth changing when tank filled of 10 ft?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
..
dumbcow
  • dumbcow
Volume cone = 1/3*h*pi*r^2 given is rate volume is changing dV/dt = 10 required is rate depth or height is changing dh/dt dV/dt = dh/dt * dV/dh notice how dh will cancel on right side now to find dV/dh we need V in terms of h so find relationship between r and h h of tank = 15, r of tank = 20 r/h = 20/15 --> r = 20h/15 plug this in for r in volume formula V = 1/3pi*h*(20h/15)^2 = 1/3pi*(16/9)h^3 dV/dh = pi*(16/9)h^2 dV/dt = dh/dt * dV/dh 10=dh/dt * (pi*(16/9)h^2) dh/dt = 10/(pi*(16/9)h^2) find dh/dt when h=10 dh/dt = 1/pi*160/9 = .0179

Looking for something else?

Not the answer you are looking for? Search for more explanations.