dumbcow
  • dumbcow
lim as n->infinity [n*tan(pi/n)]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
you can use the squeeze theorem here ^_^
nikvist
  • nikvist
\[\lim_{n\rightarrow\infty}n\cdot\tan\frac{\pi}{n}=\lim_{n\rightarrow\infty}\frac{n}{\cot\frac{\pi}{n}}= \lim_{n\rightarrow\infty}\frac{1}{-\frac{1}{\sin^2\frac{\pi}{n}}}=-\lim_{n\rightarrow\infty}\sin^2\frac{\pi}{n}=0\]
nikvist
  • nikvist
my wrong

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

dumbcow
  • dumbcow
hmm interesting yeah i know its pi but can seem to show it mathematically
anonymous
  • anonymous
the answer must be zero :)
dumbcow
  • dumbcow
i seem to always get an indeterminate limit, even when using L'hopitals rule repeatedly
dumbcow
  • dumbcow
sstarica, graph function and you will see limit is not 0
nikvist
  • nikvist
\[\lim_{n\rightarrow\infty}n\cdot\tan\frac{\pi}{n}= \lim_{m\rightarrow 0}\frac{\pi}{m}\cdot\tan{m}= \pi\cdot\lim_{m\rightarrow 0}\frac{\tan{m}}{m}= \pi\cdot\lim_{m\rightarrow 0}\frac{1}{\cos^2{m}}=\pi\]
dumbcow
  • dumbcow
ahh like u substitution to avoid chain rule...thank you very much
anonymous
  • anonymous
Thank You! Why?

Looking for something else?

Not the answer you are looking for? Search for more explanations.