anonymous
  • anonymous
Using the converse of the Pythagorean Theorem and the following triangle leg lengths, classify the triangle: 2", 3", 4" ... is it right, acute, or obtuse?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
radar
  • radar
If it is a right triangle then the longest side is equal to the square root of the sum of the other two sides squared. If c is the longest side, and the other two sides are a, and b, then : \[c=\sqrt{a ^{^{2}}+b ^{2}}\]
radar
  • radar
Make the test.
anonymous
  • anonymous
That equals like 3.6 though, right?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

dumbcow
  • dumbcow
2^2 + 3^2 < 4^2 so triangle is obtuse also using law of cosines 2^2 + 3^2 -2*2*3cosx = 4^2 cosx = -1/4 x=104 degrees
radar
  • radar
a squared = 4 b squared = 9 The saquare root of 13 = 3.6 that is not a right triangle
radar
  • radar
Clarifying dumbcow use of the laws of cosines, it would be better to express the equation as: \[(2^{2}+3^{2}-4^{2})/(2\times a \times b)=\cos -.25\] \[\cos^{-1} -.25=104 ^{o}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.