evaluate the indefinite integral......x^9/ sqrt(3+x^5)..... i got pretty far but now i need help because im stuck at a certain point

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

evaluate the indefinite integral......x^9/ sqrt(3+x^5)..... i got pretty far but now i need help because im stuck at a certain point

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

x^9 ----------- this thing? sqrt(3+x^5)
im stuck at (1/5) integrate (u-3) /sqrt(u)..................
x^9 * sqrt(3+x^5) ---- ---------- sqrt(3+x^5) sqrt(3+x^5) =x^9

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yes ha
x^9 ___________ sqrt3 +x^5
i got to the point where i have a split integration
x^9 ----------- u = 3+x^5; du = 5x^4 dx; du/5x^4 = dx sqrt(3+x^5) x^9 du x^5 du ----------- = --------- 5x^4 u^(1/2) 5 u^(1/2) what x=? u = 3+x^5; x^5 = u-3 right u-3 du --------- 5 u^(1/2)
\[\int\limits_{} \frac{1}{5} u(u^{-1/2}) - \int\limits_{} \frac{3}{5} u^{-1/2}\]
thats where im at now .. then you have to split them and get the integral of u / 5 u ^(1/2) - 3/ 5 u ^(1/2)
u[u^(-1/2)] = u^(1/2) right?
\[\frac{1}{5} \int\limits_{} u^{1/2} - \frac{3}{5} \int\limits_{} u^{-1/2}\]
wouldnt it be (2/5)?
wouldnt it be (2/5)?
for the first one that is ../.
because to get rid of the half in the denominator you have to multiply by 2?
\[\frac{u^{(\frac{1}{2} + 1)}}{5(\frac{1}{2} + 1)} - \frac{3u^{(-\frac{1}{2}+1})}{5(- \frac{1}{2}+1)}+C\]
there is no 1/2 in the denominator; thats an exponent :)
ahhh pellet i see now ... so what now after thats ?
\[\frac{2u \sqrt{u}}{15} - \frac{6}{5\sqrt{u}} + C\] if I kept track of everything..its easier on paper i spose :)
soooo close :) move that sqrt(u) back up top with the "6"
change all yor "u"s back into (x+x^5)
how did you get 2U?
the bottom of that side goes to 5(3/2) = 15/2...flip the 2 on top..... shortcut math really; the proper what is to multiply bythe reciprocal of the denominator
Possible intermediate steps: integral x^9/sqrt(3+x^5) dx For the integrand x^9/sqrt(x^5+3), substitute u = x^5 and du = 5 x^4 dx: = 1/5 integral u/sqrt(u+3) du For the integrand u/sqrt(u+3), substitute s = u+3 and ds = du: = 1/5 integral (s-3)/sqrt(s) ds Expanding the integrand (s-3)/sqrt(s) gives sqrt(s)-3/sqrt(s): = 1/5 integral (sqrt(s)-3/sqrt(s)) ds Integrate the sum term by term and factor out constants: = 1/5 integral sqrt(s) ds-3/5 integral 1/sqrt(s) ds The integral of 1/sqrt(s) is 2 sqrt(s): = 1/5 integral sqrt(s) ds-(6 sqrt(s))/5 The integral of sqrt(s) is (2 s^(3/2))/3: = (2 s^(3/2))/15-(6 sqrt(s))/5+constant Substitute back for s = u+3: = 2/15 (u+3)^(3/2)-(6 sqrt(u+3))/5+constant Substitute back for u = x^5: = 2/15 (x^5+3)^(3/2)-(6 sqrt(x^5+3))/5+constant Which is equal to: = 2/15 (x^5-6) sqrt(x^5+3)+constant
and sqrt(u^3) = u sqrt(u)
wow thank you so much ...

Not the answer you are looking for?

Search for more explanations.

Ask your own question