anonymous
  • anonymous
Show that if M= PDP^-1, then M^n=PDN^nP^-1 for n=1,2,.... Can you help with this?
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
what's N in this?
anonymous
  • anonymous
can u come to help me
anonymous
  • anonymous
can you tell me what your decomposition is? I"m assuming D is a diagonal matrix...i'm not sure what N is

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
@Astyria not rlly sure thats all the problem says but it says n=1,2,...
anonymous
  • anonymous
Did that help any?
anonymous
  • anonymous
hm...sorry i'm not sure...my linear algebra isn't very good...i think you are trying to prove that you can find powers of a matrix by first decomposing it into PDP^-1 and then multiplying the diagonal matrix D by a power of N...but i'm not so sure what that N matrix needs to look like
anonymous
  • anonymous
try reposting the question...maybe there's someone else that can help
anonymous
  • anonymous
thats all it says....maybe it jus asking how to start with M= PDP^-1, then end up with M^n=PDN^nP^-1. I have no clue but thats all the question is

Looking for something else?

Not the answer you are looking for? Search for more explanations.