anonymous
  • anonymous
Find the equation of the line tangent to the curve y=e^x *sqrt(3+e^(2x))
Mathematics
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
First find the derivative.
anonymous
  • anonymous
i believe its: y'= (e^x)(sqrt(3+e^(2x))+ e^(3x)/(sqrt(3+e^(2x))
anonymous
  • anonymous
oh, it is at the point (0,2)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Well once you find the derivative, the equation of a line is y=mx+b where m is now represented by your derivative function. So it's pretty much a plug and solve problem once you have the derivative.
anonymous
  • anonymous
I believe your derivative is correct also.

Looking for something else?

Not the answer you are looking for? Search for more explanations.