anonymous
  • anonymous
Let C be the positively oriented square with vertices (0,0) , (12,0) , (12,1) , (0,1) . Use Green's Theorem to evaluate the line integral CFdr where F(xy)=8e^yi+7xe^yj
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
nm got it
anonymous
  • anonymous
i think its weird to get a negative answer if the parameters are based in the positive first quadrant
anonymous
  • anonymous
can u post ur solution?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
F(x,y)= 8e^yi+7xe^yj the line integral \[\int\limits_{?}^{?}F.dr\]
anonymous
  • anonymous
F(x,y)=<8e^y,7e^y>, where P= 8e^y and Q= 7e^7, Qx=7e^y and Py=8e^y. Greens theorem states int(int(Qx-Py,,dx)dy)
anonymous
  • anonymous
0
anonymous
  • anonymous
=\[\int\limits_{?}^{?}F(r(t)),r'(t) dr\]
anonymous
  • anonymous
thats the fundamental theorem for conservative line intergrals
anonymous
  • anonymous
i m trying to use the line integral for a vector field
anonymous
  • anonymous
int(int(7e^y-8e^y,y,0,1),x,0,12)=-20.619
anonymous
  • anonymous
:S
anonymous
  • anonymous
y negative?
anonymous
  • anonymous
I guess the function is loopy
anonymous
  • anonymous
haha

Looking for something else?

Not the answer you are looking for? Search for more explanations.