anonymous
  • anonymous
Write a nonlinear system of equations in two variables to model the application problem. Solve the system of equations algebraically. Show your work. Find two complex numbers, x and y, whose sum is -10 and whose product is 29.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
just follow the given info: x+y=-10 x*y=29 this is your system. you can express x in term of y or y in a term of x from the first equation & substitute- in second. Solve it for the variable.
anonymous
  • anonymous
x + y = -10 ...(1) xy = 29 ...(2) from (2), x = 29/y put that into (1): 29/y + y = -10 (29+y²)/y = -10 29+y² = -10y y² + 10y + 29 = 0\[y = [ -10 \pm \sqrt{100-116} ] / 2\]\[y = [-10\pm2\sqrt{-4}] / 2\]\[y=-5\pm \sqrt{-4}\]\[y=-5\pm2i\] x + (-5+2i) = -10 and x + (-5-2i) = -10 so x = -10+5-2i or -10+5+2i\[x = -5\pm2i\]
anonymous
  • anonymous
When y = -5+2i, x = -5-2i When y = -5-2i, x = -5+2i

Looking for something else?

Not the answer you are looking for? Search for more explanations.