• anonymous
In the figure shown above, lengths AB, BD, and CD are all 3√2 units. Angles A and C are both 45°. What is the perimeter of ABCD? What is the area of ABCD? see attachment for the figure
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • schrodinger
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
1 Attachment
  • dumbcow
Look at 2 triangles, notice they are isosceles triangles w/ 2 equal sides this means corresponding angles are equal -> y and z are both 45 degrees From this we can say the third angle must be 90 degrees Now we have 2 45-45-90 right triangles where BC and AD are hypotenuse BC = AD = (3sqrt(2))*sqrt(2) = 6 perimeter just add up all outside sides area find height by drawing straight line down one of the triangles forming a new right triangle of lengths 3:h:3sqrt(2) solve for h and multiply by 6 to get area

Looking for something else?

Not the answer you are looking for? Search for more explanations.