anonymous
  • anonymous
The cross section of a trough is an inverted isosceles triangle. Prove that the trough has maximum capacity when the vertex angle is pi/2rad.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Define the cross sectional area in terms of the vertex angle (assuming the sides are a constant length. Differentiate to find the stationary points and prove pi/2 is a max.
anonymous
  • anonymous
Note that the area of a triangle with sides a,b,c, with the angle C between a and b has an area: \[\text{Area} = \frac{1}{2}\cdot a\ \cdot b\ \cdot \sin C \]
anonymous
  • anonymous
so differentiate 1/2ab sinc? that become 1/2ab cosc??

Looking for something else?

Not the answer you are looking for? Search for more explanations.