anonymous
  • anonymous
How to solve: Use geometric series 1/(x+1) = Summation (n=0 to infinity) (-1)^n * x^n, to find the power series representation of f(x) = 1 / (4x +3).
Mathematics
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

anonymous
  • anonymous
How to solve: Use geometric series 1/(x+1) = Summation (n=0 to infinity) (-1)^n * x^n, to find the power series representation of f(x) = 1 / (4x +3).
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
F(x)=1/(x+1) can be represented as \[\sum_{0}^{infiniti}(-1)^n x^n\] F(x)=1/(4/3x +1) is same as f(x)=1/4x+3 So you would substitute in 4/3x in place of x
anonymous
  • anonymous
Does it at least make some sense?
anonymous
  • anonymous
You would have to multiply the summation by 3.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
1/3(4/3x+1) you can factor out 1/3
anonymous
  • anonymous
* actually 1/3
anonymous
  • anonymous
Yes you factor out the 1/3 but you did not account for it.
anonymous
  • anonymous
I missed that
anonymous
  • anonymous
it is one of those little errors.
anonymous
  • anonymous
So Does it make sense now WRosa?
anonymous
  • anonymous
\[1/3\sum_{0}^{\infty} (-1^n)(4/3x)^n\]
anonymous
  • anonymous
So the solution is: f(x) = 1/(4x+3) f(x) = 1/3 ((4/3)x + 1) \[1/3 \sum_{n=0}^{\infty} (-1)^{n} ((4/3)x)^{n}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.