Please answer! Find distance from -5+4i to 0

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Please answer! Find distance from -5+4i to 0

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

wouldn't you just set it equal to 0? If that is the case it is 5/4
use distance formula d^2 = (-5)^2 + 4^2
\[\sqrt{(-5^{2}+(4i)^{2}}\] would this do it?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[\sqrt{25+(-16)}=\sqrt{9}=\pm3\]
But it asks for the distance from 0 to (-5+4i) is that still right
It is a complex number containing a real component (-5) and the imaginary component 4i
Helllllp
http://www.mathwarehouse.com/algebra/complex-number/absolute-value-complex-number.php
I get it now! Thanks
sqrt(5^2+4^2)=sqrt(25+16)=sqrt(41)
I see where I went astray, I inludec i squared which is a -1, when I should of ignored the fact there was an i, as I was actually getting the absolute value.

Not the answer you are looking for?

Search for more explanations.

Ask your own question