anonymous
  • anonymous
how do you evaluate the integral of xe^(-x^2)dx on the integral (0,infinity)?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
sub u=-x^2 so du=-2xdx
anonymous
  • anonymous
1/2\[Limit as R->\infty of 1/2 \int\limits_{0}^{R} \]
anonymous
  • anonymous
ah.. lol

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
I would do sub: u=x^2/2, so du=u and integral ( e^u du)... should be easy from this point
anonymous
  • anonymous
are you good with the improper integral part of it?
anonymous
  • anonymous
Let me know what your answer is
anonymous
  • anonymous
give me a min
anonymous
  • anonymous
Okay. Medal plz
anonymous
  • anonymous
Im getting: integral (e^(-u)du)=-e(-u) now: e^0=1 lim e(-u) when u is going to infinity = lim (1/ e^u) =0 my answer would be 1

Looking for something else?

Not the answer you are looking for? Search for more explanations.