anonymous
  • anonymous
What is the minimum value of f(x) for x > 0, if f(x) = ((x + 1/x)^6 - (x^6 + 1/(x^6)) - 2)/ ((x + 1/x)^3 + (x^3 + 1/(x^3)))
OCW Scholar - Single Variable Calculus
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Wow, that's messy! Have you graphed it to help you make a guess? With a rational function like that, the first thing I do is check the "endpoints". This function seems to have been constructed so that it has no vertical asymptotes for x>0, so I'm guessing the graph is U shaped. (I'm basing this guess on the fact that the function combines x and 1/x so that it "blows up" near x=0 and x=infinity, the fact that the denominator is always positive, and the fact that the sixth power in the numerator should dominate the third power in the denominator.) If I'm right, you'll want to calculate the first derivative and set it equal to zero. You might find that the "binomial theorem" helps you with some of the polynomial multiplication.
anonymous
  • anonymous
the best method is however to use the AM GM inequality.... AM>=GM.. equality exists when the two numbers are equal....so here x+1/x >=2...put it
anonymous
  • anonymous
if you put the -2 into that set of nested parentheses in the numerator - i.e. the equation that you wrote down =\[((x+1/x)^6-(x^6+1/x^6+2))/((x+1/x)^3+(x^3+1/x^3))\] quickly makes it evident the problem can be reduced to a difference of squares because \[(x^3+1/x^3)^2=(x^6+1/x^6+2)\]which means that your nasty-looking rational function actually simplifies to the less-gnarly \[(x+1/x)^3-(x^3+1/x^3)\] from there, \[f \prime(x)=3(x+1/x)^2(1-1/x^2)-3(x^2-1/x^4)\] which, after a little simplification, becomes \[f \prime(x)=3-3/x^2\] setting f' equal to 0 yields x=1. Since this is the only extrema and it lies on your given interval (x>0), you know it's your minimum.

Looking for something else?

Not the answer you are looking for? Search for more explanations.