One question about logarithms

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

One question about logarithms

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

in an exponential expression like this: \[2^{x}\]=m 2 is the base and x is the exponent. If i transform it to a logarithm, we have that \[\log _{2}(m)=x\] if 2 is called the base again, how do i call m?
We call it " log m to the base 2 is equal to x "
so m doesnt have an specific name. Like in exponential notation (base, index).

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

You can call it the domain of the logarithmic function.
ahhh ok. That was a really good answer!
My pleasure
Its like when you work with trigonometric function, do you provide any name to the x in sin(x)?
You just call it "x is the domain of the trigonometric sine function "
Similarly things go here.
cool. I asked three of my teachers about it. And non of them gave me an answer like that. Thanks dude
you are welcome
Mr John Roshan are you there?
Thank you Mr Luis Villamagua (you know for what)

Not the answer you are looking for?

Search for more explanations.

Ask your own question