anonymous
  • anonymous
how to find integration of ln(x) with respect to x, approximation is allowed.
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
graphical or any kind of logical solution is acceptable....
anonymous
  • anonymous
Use integration by parts.. \[\int\limits \ln(x)dx \rightarrow f=x, F=x, g=\ln(x), g'=\frac{1}{x}\] \[xln(x)-\int\limits x \frac{1}{x}dx \rightarrow xln(x)-\int\limits dx \rightarrow xln(x)-x+C \rightarrow x[\ln(x)-1]+C\]
anonymous
  • anonymous
thank u very much...

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
sure thing
anonymous
  • anonymous
but if it is a definite integral problem and x->0. then how would you approach?
anonymous
  • anonymous
sorry made a typo litte f=1
anonymous
  • anonymous
read this link about improper integrals.... it also has examples http://tutorial.math.lamar.edu/Classes/CalcII/ImproperIntegrals.aspx
anonymous
  • anonymous
as far i understood it should go to infinity..

Looking for something else?

Not the answer you are looking for? Search for more explanations.