Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

BryceThomas Group Title

How do you sketch the function in 1A-2 b) in Problem Set 1?

  • 3 years ago
  • 3 years ago

  • This Question is Closed
  1. BryceThomas Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    \[y = \frac{2}{(x - 1)^2}\]

    • 3 years ago
  2. MrGonzales Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    The way I did it was using x= (-3,-2,-1,0,1,2,3) with y = 2/(x-1)². Then you get the coordinates of the function. Notice the vertical asymptote when dividing by 0.

    • 3 years ago
  3. hburgiel Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    I look at where the function is undefined and what happens when x gets large and negative or when x gets large and positive first: At x=1 there's a division by zero, so there's a big spike there. The expression is always positive (I just noticed this) so the spike goes up. When x is large, either negative or positive, the expression is close to zero. I can now look for where the function crosses the y axis (at 2) and the x axis (not at all?) Later in the course you'll learn other things to look for. If I don't think my graph is good enough at this point, I'll do what MrGonzales suggests to get a clearer picture.

    • 3 years ago
  4. FabianMontescu Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    One method is as follows: Plot: \[y = f(x)\] In this case, \[f(x) = 1/x^2\] Now "translate" (move) the function you just plotted using: \[y - y_0 = a\times f(x - x_0)\] You'll find that \[x_0 = 1, y_0 = 0, a=2\]. You'll move the function 1 unit to the right (and zero units up or down). a =2 represents the "zoom out" factor. x0 and y0 represent movement in the x and y axis respectively. This works for all other parts of the problem. Alternatively, you can go to http://www.wolframalpha.com, but that's kinda cheating... :-)

    • 2 years ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.