What is the volume of rotation of; 1/x; from [1,inf) when spun around the x axis ?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

What is the volume of rotation of; 1/x; from [1,inf) when spun around the x axis ?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\pi \int\limits_{1}^{\infty} [1/x]^2 dx\]
Since the curve is being rotated about the x axis, we can see that the radius of the inverted funnel so formed will be in the direction of the y axis. Now, since the funnel is never ending, it will not terminate at any one point and so we can take the integral of the area of the base of the funnel from 0 to infinity. This will give us the required volume. \[\int\limits_{1}^{\infty} \pi*y ^{2} dx\]\[= \pi \int\limits_{0}^{\infty} (1/x ^{2}) dx\]\[= \pi\] , when we solve the integral.
1 to infinity in the 2nd integral*

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

it is pi :) but that looks copied and pasted :) can you expand it out?
what looks copied and pasted? we solve questions similar to this in my calculus class.. integral (1/x^2) = [-1/x] now in the limits 1 to infinity we get [0 - (-1)] * pi = pi.
the breaks between the sentences; and the exact wording from the website I saw this on is a dead give away :)
:O
the solution is the same regardless of where the info is retrieved tho so kudos ;)
lol alright
\[F(x) = \pi \int\limits_{0}^{\infty} x^{-2} dx \rightarrow F(x)=\pi. \frac{-1}{x}\]
\[F(\infty) = \pi.0 = 0\]\[F(1) = \pi.-1 = -\pi\]
\[F(\infty) - F(1) = 0 -(-\pi) = \pi\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question