anonymous
  • anonymous
Solve: 2x+3y+z=-3 x+4y-3z=-23 3x-y+2z=14
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
do you know how to use matrix or just algebra...?
anonymous
  • anonymous
Algebra
anonymous
  • anonymous
I looked at this thing and decided to use Mathematica to solve it. \[\text{Solve}[\{2x+3y+z\text{==}-3, x+4y-3z\text{==}-23 ,3x-y+2z\text{==}14\},\{x,y,z\}] \]={{x -> 1, y -> -3, z -> 4}} Feeding the solutions for x, y and z back into the equations show that they are the roots. \[\{2x+3y+z\text{=}-3, x+4y-3z\text{=}-23 ,3x-y+2z\text{=}14\}\text{/.}\{x\to 1,y\to -3,z\to 4\} \]={True, True, True} True means that the left hand side and the right hand side of each equation is equal.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Mathematica can deal with matix expressions, however, I cannot. In the case of these three equations the setup is much easier to use Solve rather than LinearSolve. Sorry.

Looking for something else?

Not the answer you are looking for? Search for more explanations.