anonymous
  • anonymous
Hi I have a Calc 2 question... Assume that the continuously differentiable vector-based function r(t) = (x(t),y(t)), a < t < b and models a level curve of the real valued function f(x,y) = y^2 + x^2y-2x^4+3 also assume that r(1) = (1,1) Find a vector model for the tangent line to r(t) at r(1). I just have no idea where to start with this any help is appreciated thanks.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
nowhereman
  • nowhereman
You should get the concepts clear at first. Level curve means there is a constant c so that \[\forall t \in (a,b): f(x(t), y(t)) = c\] So by inserting the given starting point you can calculate the constant c.

Looking for something else?

Not the answer you are looking for? Search for more explanations.