On the moon the acceleration due to gravity is 1.6 metres per second squared (approximately 1/6th of the value on earth). Standing on top of a ladder, 5 metres up, the astronaut throws a ball up vertically into the air with velocity 2m/s. How long does it take to reach the ground? How long would it take to reach the ground if the same experiment were done on earth?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

On the moon the acceleration due to gravity is 1.6 metres per second squared (approximately 1/6th of the value on earth). Standing on top of a ladder, 5 metres up, the astronaut throws a ball up vertically into the air with velocity 2m/s. How long does it take to reach the ground? How long would it take to reach the ground if the same experiment were done on earth?

Physics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

I would say use the kinematic equations to solve them. How where a= g/6 and g is earths gravity. In this case I would break it into two problems. How high does it go and how long does it take to reach the maximum height. then solve how long it takes to reach the ground. If you have no clue what to do post it. Finding this can be tedious.
\[s_f = v_0t+(1/2)g_{moon}t^2 +5\] because the ball's final height is 0meters, sf = 0meters use quadratic equation to solve for t.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question