find a polynomial equation with integer coefficients, for which 5 is a double root and 1+ square root of 2 and 1- square root of 3i are solutions. I dont know how to solve this or write it out.. help?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

find a polynomial equation with integer coefficients, for which 5 is a double root and 1+ square root of 2 and 1- square root of 3i are solutions. I dont know how to solve this or write it out.. help?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

if A, B, C , D are roots of a polynomial, the the polynomial is the product of (x -A)(x-B)(x-C)(x-D) You have the four roots as 5, 5, 1 + root2 and 1-root 3i
k.then what do i do.
In the above equation, replace A, B, C and D by the given roots and take their product to get the polynomial

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

so do (x-5)(x-5)(x-1+square root of 2)(x-1-square root of 3i)?
It will be (x-5)(x-5)[x-(1+root2)][x- (1- root of 3i)} Which becomes (x-5)(x-5)[x-1 - root2][x-1+ root of 3i}
ok
see if the co-efficients are integer and real then complex conjugate roots must exist. and if \[1+\sqrt{2}\] exists then \[1-\sqrt{2}\]also exits. let \[\sqrt{3i}=ki\] whre k is a no. \[(x-5)^{2}(x-1-\sqrt{2})(x-1+\sqrt{2})(x-1-ki)(x-1+ki)\]this gives \[(x-5)^{2}((x-1)^{2}-2)((x-1)^{2}+3)\] if you don't consider the conjugate part then you can't get integral coefficient....

Not the answer you are looking for?

Search for more explanations.

Ask your own question