anonymous
  • anonymous
Suppose A is a subset of a metric space (X,d). Given: bd(A)=cl(A) ∩ cl(X\A) Given: bd(A)=cl(A) \int(A) Show that these are equivalent. That is, show A(subset)X, then cl(A)∩ cl(X\A)=cl(A)\ int(A). Note: int(A) stands for interior point of A cl(A) stands for closure bd(A) stands for boundary
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
can youo help me again? please you explained it better then the others
anonymous
  • anonymous
yes but is the problem i hope i can help
anonymous
  • anonymous
what is the math problem you need help with.

Looking for something else?

Not the answer you are looking for? Search for more explanations.