anonymous
  • anonymous
f(x) = x^3 + 2x + k. Prove that every function of this family has exactly one real root
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
the derivative of this function is olways positive and hence it has no real root, and so the function has only one real root
anonymous
  • anonymous
thanks, but you didn't prove that the function has roots or not ?
anonymous
  • anonymous
the very fact that the derivative is positive and its an odd-degree fn shows it has atleast one root

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Answer: Let's assume that k represents any real number, let's say k = 3 f(x) = 3+2 x+x^3 Let's take two numbers : x = -30 and x = 12 Then, f(-30) = -27057 < 0 f(12) = 1755 > 0 By the Intermediate Value Theorem, there exists a number "c" between -30 and 12 such that f(c) = 0. So, the equation has a real root. Now, let's suppose that there exists two roots w and q. Then, f(w) = f(q) = 0. However, using the Rolle's Theorem, f'(s) = 0 for some s in the set of numbers (w,q), but f'(x) = 2+3 x^2 > 0 for all x. So, it is impossible to have f'(s) = 0 for some c; in other words, there will be no maximum or minimum critical points, which means that there will be exactly one real root Therefore, we conclude that for any function of family f(x) = x^3 + 2x + k, where k is any real number, there exists exactly one real root
anonymous
  • anonymous
If you can show that the derivative is positive for all values of x then the function is constantly increasing.
anonymous
  • anonymous
I have proven it that way. What do you think ?
anonymous
  • anonymous
that's basically what we were saying, but more long winded ;)
anonymous
  • anonymous
thats extremely technical and purist but i think mine is a much easier and correct way...kudos 2 u for such theoristical capability
anonymous
  • anonymous
I did some research then I put my answer together.. Thanks all
anonymous
  • anonymous
yeah uve said the same thing in a completely abstract and meticulous maner..great

Looking for something else?

Not the answer you are looking for? Search for more explanations.