Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

f(x) = x^3 + 2x + k. Prove that every function of this family has exactly one real root

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

the derivative of this function is olways positive and hence it has no real root, and so the function has only one real root
thanks, but you didn't prove that the function has roots or not ?
the very fact that the derivative is positive and its an odd-degree fn shows it has atleast one root

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Answer: Let's assume that k represents any real number, let's say k = 3 f(x) = 3+2 x+x^3 Let's take two numbers : x = -30 and x = 12 Then, f(-30) = -27057 < 0 f(12) = 1755 > 0 By the Intermediate Value Theorem, there exists a number "c" between -30 and 12 such that f(c) = 0. So, the equation has a real root. Now, let's suppose that there exists two roots w and q. Then, f(w) = f(q) = 0. However, using the Rolle's Theorem, f'(s) = 0 for some s in the set of numbers (w,q), but f'(x) = 2+3 x^2 > 0 for all x. So, it is impossible to have f'(s) = 0 for some c; in other words, there will be no maximum or minimum critical points, which means that there will be exactly one real root Therefore, we conclude that for any function of family f(x) = x^3 + 2x + k, where k is any real number, there exists exactly one real root
If you can show that the derivative is positive for all values of x then the function is constantly increasing.
I have proven it that way. What do you think ?
that's basically what we were saying, but more long winded ;)
thats extremely technical and purist but i think mine is a much easier and correct way...kudos 2 u for such theoristical capability
I did some research then I put my answer together.. Thanks all
yeah uve said the same thing in a completely abstract and meticulous maner..great

Not the answer you are looking for?

Search for more explanations.

Ask your own question