anonymous
  • anonymous
use trapezoid rule to evaluate . Use n=4 integral 1 to 3 (sqrt(1+x^3)dx
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
ANSWER: Trapeziodal's Rule result = 0.0529224 Error = 0.000352592 Midpoint's Rule result = 0.0523936 Error = 0.000176241 Simpson's Rule result = 0.0525704 Error = 5.82087*10^-7
anonymous
  • anonymous
but how to do it?
anonymous
  • anonymous
that's a bit long process

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
[(b-a)/n] [f(a)+f(b)+1/2(f(all the rest))] right?
anonymous
  • anonymous
do you know how to fid the tangent line approximation of f(x)=sin2x+cosx at (pi/2. 0)
amistre64
  • amistre64
it looks doable
amistre64
  • amistre64
you mean the equation of the tangent line at (pi/2,0) right?
anonymous
  • anonymous
i know how to find the equation but approximating making some boxes i dont know
amistre64
  • amistre64
derive the function and solve it for the input values to get the 'slope' of yout line equation
amistre64
  • amistre64
f'(x) = 2cos(2x)-sin(x) right?
amistre64
  • amistre64
or am i thinking of something else lol
anonymous
  • anonymous
ok yes thats right

Looking for something else?

Not the answer you are looking for? Search for more explanations.