At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

See more answers at brainly.com

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions

Is this a first order reaction?

these problems are easier than it looks like

let's say N is the current amount and N_0 be the original amount

in one year, N-0 becomes 99.75% of N_0 so
\[N_1 = .9975*N_0\]

next year, N_1 becomes 99.75% of N_1 so
\[N_2 = .9975*N_1\]

if you substitute N_1 with N_0, \[N_2 = (.9975)*(.9975N_0)\]

all you have to do is to solve for t :)

Is the answer 109.64 years?

since\[t = {\ln(.76) \over \ln(.9975)} \]
which is approximately 109.6
I'd use 110

yep

thanks!