anonymous
  • anonymous
anyone help me another problem 2. Reduce each equation to standard form then find the coordinates of the center the foci, the end of the major axes and the ends of each latus rectum. Sketch the curve. Given problem: 4xsquared + ysquared +8x -4y-8=0
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
dumbcow
  • dumbcow
Standard form: \[\frac{(x+1)^{2}}{4} + \frac{(y-2)^{2}}{16} = 1\] Center: (-1,2) Foci: (-1,2+-2sqrt(3)) Major axis: (-1,2 +-4) Minor axis: (-1 +-2, 2)
anonymous
  • anonymous
thankyou dumbcow for helping me but i want to know how you get these answer. im scared if our prof: ask me where i get my answer then i cant answer him
dumbcow
  • dumbcow
First group x's and y's together and move constants on right hand side (4x^2 +8x) + (y^2-4y) = 8 Then use completing the square Factor the 4 out of x's part first 4(x^2+2x) +(y^2-4y) = 8 4((x+1)^2-1) +(y-2)^2-4 = 8 distribute 4 back in 4(x+1)^2 -4 +(y-2)^2 -4 = 8 move constants to right side 4(x+1)^2 + (y-2)^2 = 16 Now divide by 16 to get 1 on right side (x+1)^2 /4 + (y-2)^2 /16 = 1 Now you have it in standard form The rest is pretty straightforward once you have it in this form Use the attached reference sheet for ellipses to help you hope this helps

Looking for something else?

Not the answer you are looking for? Search for more explanations.