sqrt x+2+sqrt x=4 lol i keep asking for help on this

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

sqrt x+2+sqrt x=4 lol i keep asking for help on this

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

is that sqrt(x) + 2 or sqrt(x+2)
well if its the former, x = 1 if the latter, x =49/16
x=49/16 can you explain how you got this please?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[\sqrt{x+2} + \sqrt{x} = 4\] \[\iff \sqrt{x+2} = 4-\sqrt{x} \] Squaring both sides yields: \[x+2 = 16 - 8\sqrt{x} + x \implies \sqrt x = \frac{7}{4} \] And squaring gives the result. Note, squaring can produce spurious roots, so we must check this back in the original equation, and see that it holds.
16-8sqrt x+x can you explain that more
(a-b)^2 = a^2 - 2ab + b^2 let a = 4 , b = sqrt(x)
You're welcome. ¬_¬
is this a formula (a-b)^2 = a^2 - 2ab + b^2
Not a formula so much - well, it is an identity, but it's more just common sense of expanding brackets.
um one more thing\[\sqrt{x+2} +\sqrt{x-4}\rightarrow \sqrt{x+2}-4-\sqrt{x}\] how did the sqrt of x become negative when you move it
Errr, what? That didn't happen, at all. Assuming your question was right, the 4 was never under the root... and was on the other side.
i meant \[\sqrt{x+2}+\sqrt{x} -4\]
Im still confused .......
Im still confused .......

Not the answer you are looking for?

Search for more explanations.

Ask your own question