anonymous
  • anonymous
Given any arbitrary hyper-ellipsoid defined by an orthonormal basis, center and extents along each axis, calculate the global maximum of the curve bounded by any arbitrary vector V, and the perpendicular plane P to V, where both V and P intersect the each other and the hyper-ellipsoid.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Do you know the standard equation of the ellipsoid? .. that will help.
anonymous
  • anonymous
So I should implicitly differentiate the bounded curve of the equation of an ellipsoid to find the maximum? What about its arbitrary orientation?
anonymous
  • anonymous
First you setup the ellipsoid from the conditions, then find critical points based on D=f_xx*f_yy-f_xy*f_yx, D>0 where f_xx>0. Then put each critical point, plus the end points into the original ellipsoid to the greatest value, which is the global maximum.

Looking for something else?

Not the answer you are looking for? Search for more explanations.