anonymous
  • anonymous
What are the criteria for using L'Hopital's rule?
Mathematics
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

Mini
  • Mini
0/0
Mini
  • Mini
0*inf
Mini
  • Mini
uh 0 - inf

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
the limit must exist
anonymous
  • anonymous
As Mini was saying, it cannot be an indeterminate form.
Mini
  • Mini
0/0 is the easiest one to see, then u can just do it on top and bottom, but dont confuse it with the quotient rule! thatll suck!
anonymous
  • anonymous
er Scratch what I said last: \lim_{x\to c}{f(x)} = \lim_{x\to c}g(x) = 0 or \lim_{x\to c}{f(x)} = \pm\lim_{x\to c}{g(x)} = \pm\infty. And suppose that \lim_{x\to c}{\frac{f'(x)}{g'(x)}} = L. Then \lim_{x\to c}{\frac{f(x)}{g(x)}}=L.
Mini
  • Mini
thats so confusing to try to read on this
Mini
  • Mini
qriy just post the equation it might be easier
anonymous
  • anonymous
Does Limit of (x-4)/(x+4)^2 with x->-4 fit the criteria for L'Hopital?
anonymous
  • anonymous
Some of the situations that call for Lhopital\[\infty/ \infty\]\[\infty-\infty\]\[1^{\infty}\]\[\infty ^{0}\]\[0^{\infty}\]\[0\infty\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.