anonymous
  • anonymous
given the revenue function R(x) =900x-3x2, and the cost function C(x)=450x+5000, with the 0< x < 150 find the break even point, find the profit function, P(x), find the maximum profit, simplify, using positive exponents x-2(4x4)3/2
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
The break even point is the point at which the revenue is equal to the cost, that's: \[900x-3x^2=450x+5000 \implies 3x^2-450x+5000=0 \implies x=12.08, x=137.9\]
anonymous
  • anonymous
The prophet is the the revenue minus the cost. So, \[P(x)=900x-3x^2-450x-5000 \implies P(x)=450x-3x^2-5000\]
anonymous
  • anonymous
do u think u can answer the other 2 questions

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Of course I can, but I don't have time for that. To find the maximum prophet, solve for x when the derivative equal to zero. Substitute this value of x into P(x); that would be your maximum.

Looking for something else?

Not the answer you are looking for? Search for more explanations.