anonymous
  • anonymous
An open box is to be made from a square piece of cardboard of perimeter 20 cardboard by cutting four equal square pieces from each corner and turning up the sides. What is the ide length of the pieces that should be cut out so that the box will have maximum volume? A. 10" B. 10/3 " C. 3 " D. 5 "
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
20/4 = 5 each side of your material is gonna be 5 wide; we need to remove an x by x piece from the sides so volume of the box is: Vb = x * (5-x-x) * (5-x-x) = x(5-2x)^2 = 4x^3 -20x^2 +25x To find the max volume we derive this to get: Vb' = 12x^2 -40x +25 Vb' = 0 = max
amistre64
  • amistre64
we can narrow the choice to B or C simply because they are improbable
amistre64
  • amistre64
plug in those values to Vb and see what you get :) 3(4(9) -20(3) + 25) 3(36 - 60 + 25) 3(1) = 3

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
(10/3) (4(100/9) -20(10/3)+25) = 9.26 id go with b

Looking for something else?

Not the answer you are looking for? Search for more explanations.