prove the identity (1+tan2x)/ (sin2x+cos2x)=sec2x

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

prove the identity (1+tan2x)/ (sin2x+cos2x)=sec2x

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

is it (tanx)^2 or tan(2x)
ok i think its tan(2x)
ok tan(2x)=sin(2x)/cos(2x)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

tan2 x
This question came up already, check for spanishkb31
the identity works if the 2s are ^2
multiply both top and bottom by cos(2x)
sin^2(x) + cos^2(x) = 1
so we have [cos(2x)+sin(2x)]/[cos(2x){sin(2x)+cos(2x)}]=1/cos(2x)=sec(2x)
...leaving 1+tan^2(x) = sec^2(x) which is an identity, but can be further proved by multiplying through by cos^2(x): sin^2(x) + cos^2(x) = 1
1 Attachment
dear god thank you
it doesnt have to be the "squareys"
Haha this is a coincidence. It works in both cases; if 2 is the exponent or part of the angle.
right :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question