anonymous
  • anonymous
prove the identity (1+tan2x)/ (sin2x+cos2x)=sec2x
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
myininaya
  • myininaya
is it (tanx)^2 or tan(2x)
myininaya
  • myininaya
ok i think its tan(2x)
myininaya
  • myininaya
ok tan(2x)=sin(2x)/cos(2x)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
tan2 x
anonymous
  • anonymous
This question came up already, check for spanishkb31
anonymous
  • anonymous
the identity works if the 2s are ^2
myininaya
  • myininaya
multiply both top and bottom by cos(2x)
anonymous
  • anonymous
sin^2(x) + cos^2(x) = 1
myininaya
  • myininaya
so we have [cos(2x)+sin(2x)]/[cos(2x){sin(2x)+cos(2x)}]=1/cos(2x)=sec(2x)
anonymous
  • anonymous
...leaving 1+tan^2(x) = sec^2(x) which is an identity, but can be further proved by multiplying through by cos^2(x): sin^2(x) + cos^2(x) = 1
myininaya
  • myininaya
1 Attachment
anonymous
  • anonymous
dear god thank you
myininaya
  • myininaya
it doesnt have to be the "squareys"
anonymous
  • anonymous
Haha this is a coincidence. It works in both cases; if 2 is the exponent or part of the angle.
myininaya
  • myininaya
right :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.