anonymous
  • anonymous
Rewrite with positive exponents. Assume that even roots are of nonnegative quantities and that all denominators are nonzero. (2x^(-1/2))^-3
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
((x^1/2)/2)^3
radar
  • radar
\[x \sqrt{x}\over 8\]
anonymous
  • anonymous
yeah...makes the same answer...

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

radar
  • radar
looks prettier lol
anonymous
  • anonymous
im confused
anonymous
  • anonymous
lol...didnt knw can write these equations here :D
anonymous
  • anonymous
\[(2x ^{(-1/2)})^{-3}\]
anonymous
  • anonymous
negative exponent in numerator means take ur variable in denominator and ur exponent becomes positive....makes sense to you?
anonymous
  • anonymous
that is what i have to solve
anonymous
  • anonymous
\[(2/\sqrt{x})^{-3}\]
anonymous
  • anonymous
then invert the equation inside and make ur 3 poitive...got it?
anonymous
  • anonymous
no. i have never done a problem like this before.
anonymous
  • anonymous
c ur teacher tomorrow for the best then:)
anonymous
  • anonymous
ok.

Looking for something else?

Not the answer you are looking for? Search for more explanations.