anonymous
  • anonymous
Supposed p(n)=2^-n represents the nth partial sum of an infinite series Sum[s(n),n=1,Inf.]. Assume s(n) and p(n) are defined for all positive integers. What is the value of Sum[s(n),n=1,Inf.]? A. 0 B. 1 C. 2 D. 3 E. None of the above/ cannot be determined
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Suppose \[p(n)= \frac{1}{2^n}\] represents the nth partial sum of an infinite series:\[\sum_{n=1}^{∞}s(n)\] Assume s(n) and p(n) are defined for all positive integers. What is the value of \[\sum_{n=1}^{∞}s(n)?\]
anonymous
  • anonymous
the limit of the series is the limit of the partial sums. This limit is clearly 0 so the limit of the series is 0.

Looking for something else?

Not the answer you are looking for? Search for more explanations.