A solid generated when region in the first quadrant is enclosed by curves y=2x^2 and y^2=4x is revolved around the x-axis. What is the volume? A. Pi/5 B. 2Pi/5 C. 8Pi/5 D. 6Pi/5

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

A solid generated when region in the first quadrant is enclosed by curves y=2x^2 and y^2=4x is revolved around the x-axis. What is the volume? A. Pi/5 B. 2Pi/5 C. 8Pi/5 D. 6Pi/5

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

solve for intersections sub the first eqn into the second equation 4x^4= 4x x^4 - x =0 x(x^3-1) =0 x=0, x=1 for real solutions
1 Attachment
See the picture this is equal to the volumeof rotation below the curve y^2 = 4x minus the volume of rotation found by rotating the lower curve ( ie y=2x^2) Remember Volume of curve about x axis form x=a to x=b is \[V = \int\limits_{a}^{b} y^2 dx\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

so our volume is equal to \[V= \int\limits_{0}^{1} ( 4x ) dx - \int\limits_{0}^{1} ( 2x^2)^2 dx\]
\[ V= \int\limits_{0}^{1} 4x - 4x^4 dx \]
Whoops, there should be a actor of pi outside the the integrals
so answer = pi [ 2 - 4/5] = 6pi/ 5 = \[\frac{6\pi}{5}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question