• anonymous
Sketch the regions enclosed by the given curves. Decide whether to integrate with respect to x or y. Draw a typical approximating rectangle and label its height and width. y = sqrt of x y = (1/3)x x=16
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • chestercat
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
It doesn't matter, you can do it either way. Either way you end up splitting it up into 2 integrals. If you integrate with respect to x you would do: \[\int\limits_{0}^{9}(\sqrt(x)-x/3)dx+\int\limits_{9}^{16}(x/3-\sqrt(x))dx\] To find the place where you would split the integral up you need to set x/3 equal to sqrtx. Once you solve for x, the answers end up being 0 and 9. Pretty obvious how to split it up at that point.
  • myininaya
1 Attachment
  • anonymous
thank you guys both soo much :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.