lim(x to 0)[(cosx)/x]=

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

lim(x to 0)[(cosx)/x]=

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

its undefined from the right it goes to infinity from the left it goes to -infinity
Use the squeeze theorem \[\lim_{x\to\infty}\cos((\pi/x)-x)/x = \lim_{x\to\infty}sin(x)/x = 0 \] It follows that; \[\lim_{x\to\infty}\cos(x)/x = 0 \]
Sorry bout that It is undefined, myininaya is right

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

the limit doesnt exist
yep it doesn't exist would be an accurate way of saying it.
Be careful. As x approaches zero, (cos x)/x gets larger and larger. So limit is +infinity.

Not the answer you are looking for?

Search for more explanations.

Ask your own question